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Abstract. A variational method is presented which is based on the minimization of the 
norm of the function H - E I $ )  and therefore can be considered as a generalization of the 
recently developed methods by Harris, Ladanyi and Schmid. It seems more laborious than 
the above methods but it can be used with confidence when there does not exist, a priori, 
any information about the expected results. I t  is free of singularities, the results are obtained 
in terms of absolutely converging series and it provides criteria for choosing the components 
of the trial function. 

On the other hand it leads in a straightforward way to a simple formalism for upper and 
lower bounds of the phase shifts. This formalism needs a reasonable amount of calculation; 
it is easily applicable to one- or many-channel scattering as well as to the cases where 
exchange effects are taken into account 

1. Introduction 

A method for attacking in an approximate way a complicated problem will be called 
‘effective’ if at the same time it provides a kind of criterion by which one can either 
find out which of two different results obtained by this method is closer to the correct 
one, or estimate the corresponding probable error. Such an ‘effective’ method, for 
example, is the Ritz-Schrodinger (RS) variational method for the calculation of energy 
levels. This is due to the fact that this method provides an extremum principle. 

The RS variational method has been extended to the scattering problems by Hulthen 
(1944, 1948, 1952), Kohn (1948), Feshbach and Rubinow (1952) and others. These 
methods however, at least for calculations of phase shifts, are not ‘effective’. Extrema 
principles do  not exist and the results obtained by them do not show generally any 
regular convergence. Moreover the presence of spurious singularities (Schwartz 1961) 
increases the calculation labour for localizing or eliminating them, while no rule exists 
for choosing the components of the trial function. 

For a period interest was focused towards modifying the above methods in order 
to avoid the spurious singularities (Harris 1967, Harris and Michels 1967, Nesbet 1968) 
though without full success. On the other hand the recently developed methods by 
Harris and Michels (1969), Ladanyi and Szondy (1971) and Schmid and Schwager 
(1972), although avoiding spurious singularities, fail to improve generally the behaviour 
of the obtainable results or to provide an estimation of the probable error. 

Only Kato’s (1951) method is an ‘effective’ one, as it provides upper and lower 
bounds for the phase shifts. It is applicable to the case of elastic scattering by a central 
potential. Spruch and Rosenberg (1960) have applied Kato’s method to the case of 
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zero energy e f H  scattering. Unfortunately, it seems that it is not possible to apply this 
method to the general case of many-channel scattering or to the case when exchange 
effects are taken into account. 

The least norm method (LNM) presented here is free of singularities, derives the 
results in terms of absolutely convergent series, gives criteria for choosing suitable 
components of the trial function, provides a measure of the mean deviation of the trial 
function from the exact solution and, finally, leads in a very simple way to upper and 
lower bounds for phase shifts. The method is applicable to the case of many-channel 
scattering and to the case with exchange effects. 

The text of this paper falls into two parts, The first part consists of $5 2 and 3. In 
0 2 the general trend of the LNM is exposed. For the sake of clarity we consider the case 
of one-channel scattering by a local central potential-the extension to more com- 
plicated cases is straightforward. Suitable ways for application of the method are given 
in Q 3. In all cases explicit expressions for the phase shifts are given in terms of absolutely 
converging series. 

Most important, however, is the second part, Q 4, in which one arrives by a simple 
way at upper and lower bounds for the phase shifts, for one- as well as for many-channel 
scattering. A numerical application to e-  H' scattering in a static approximation is 
given at the end of 0 4 to illustrate the use of the bounds in obtaining quite accurate 
results, in spite of the fact that the gap between upper and lower bounds could be 
relatively large. The procedure is as follows. One uses only the linear parameters as 
variational ones, while the nonlinear ones are left as free parameters. Considering 
several sets of values for these free parameters one obtains several pairs of bounds. 
The overlapping of the gaps between the bounds narrows the range in which the phase 
shift must lie and so one can reach high accuracy. 

1.1. The basic concept 

The development of the method is based on the following proposition. 'If 

J/*f dr = 0 

the function f is zero almost everywhere within the region of integration.' 
Therefore if one is looking for a solution of any equation of the form 

OlL = 0 

with given boundary conditions, it is sufficient to state that 

N 2  = JQw(r)(o$)+(gll/)di = 0. (3) 

The integration extends over a region Q 2 D, where D is the region of definition of 
the solution of equation (2). In the integration (3) care is taken to incorporate the 
boundary conditions in the function $, while w(r) is any function which is positive 
throughout the region of integration, except perhaps at  the origin where it may be zero. 

For an approximate solution of (2) the corresponding requirement is that the 
left-hand side Of (3) is a minimum. Therefore in an approximative procedure the problem 
becomes a variational one and the value of N 2  can be defined as the norm of the function 
all/. It gives a measure of the mean deviation from the exact solution. The simplest way 
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is to use a direct method, ie to expand IC/ in terms of a complete set of independent functions 
in the region of definition of the solutions, taking care to incorporate the boundary 
conditions. Then the coefficients of the expansion are the variational parameters. 

2. Themethod 

2.1. Notation 

For simplicity of the formalism we adopt the following notation : 

A = E - H  
f = ( E - H ) f  

(f,g) = (17?'lwlAg) = (flwlt?) = JWf*ldr.  

Especially in the case we consider here, 

where the following conditions on u(r) are imposed : 

rlu(r)l dr < a, 

for any 0 < a < CO. 

2.2. Form of the trial function: remarks 

If we use standing waves and S I ,  CI are the regular and irregular asymptotic solutions of 

Aw = 0 (7) 

where H is (4), we put S = S, and C = C,g. The function g is used to eliminate the 
singularity of CI at the origin such that 

7 g;Lm --* 1. (8) (r) ,.21+ 1 

Then we can write the solution of (7), w ,  as 

g,+o 

0 = S+xC+@. (9) 

The function @, in as much as u(r) and dg(r)/dr fall off at infinity faster than r-3'2 (see 
appendix), is a normalizable real function which behaves at the origin as rl'l. Then 
x is the tangent of the phase shift 'I,. With these requirements in the formation of w we 
incorporate in it the proper boundary conditions. Now given any 'complete' set of 
linearly independent functions {ui}, @ can be expanded as 

00 

@ = 1 aiui. 
i =  1 

In an approximation one truncates the expansion (lo), considering the first n terms 
of it. The set is 'complete' in the sense that all of its components behave at the origin 
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as rm with m 2 [+ 1. On this point it is interesting to make the following simple but 
useful remarks : 

(i) Given a complete set of independent functions { e j }  ( j  = 0, 1 , 2 , .  . .), which span 
a Hilbert space .fo, one can rearrange it to form the equivalent set {ui} such that 

U, = r"v,(r) (n = 0,1,2, .  . .) 
where 0 < lv,(O)1 < x;. Any subset { u k }  with k 2 m spans a subspace Hm. It is obvious 
that 

xo 3 XI 3 x*.. . ,  
and that any subspace X, has exactly one dimension more than the next one Hn+ , . 
we shall have 

If we expand the function 0 of (10) in terms of the complete set { U , }  ( i  = 0, 1,2, .  , .) 

1: IC 

0 = bjuj = bjrjvj 
j = O  j = O  

Requiring now that the exact 0 behaves at the origin as r f +  we see at once that 

bo = b ,  = b,  = . . .  = b, = 0. 

Therefore taking U, in (10) behaving at r = 0 at least as r'" we avoid using components 
which disappear at the limit. 

when 
we apply the operator I?, because of its kinetic energy part?, we have {ai} c 8, and 
therefore the set {a,} is not complete in this subspace. It is missing exactly one dimension. 
There is one-to-one correspondence between the two sets { u i }  c X;+ and { a j }  c Xl. 
The functions s and c are normalizable and belong to the subspace Xl but not to the 
part of it spanned by the set {ai), because then S and C ought to belong to the subspace 
X;  + 

(ii) While the chosen set ( u i )  in (10) is a complete set for the subspace XI+ 

ie should be normalizable. So one can put 

s = s,+s,,, c = c,+c,, (11) 

s,, and e,, c {ai}, 
where 

(12) 

s, lie, I pi).  (13) 
It is interesting to note that e, is not affected by the cut-off function which is introduced 
in C in order to make it behave as r f +  at the origin. 

while 

From the relation 

Ao = S + X C + &  

we have 
(s,+xe,)+(s,,+.c,, +&) = 0 ;  

x = -s,/e, 

S I ,  + x c l ,  +& = 0. 

therefore, 

and 

t We suppose that u(r) has at most a simple pole at the origin. 
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In the present method one is working with equation (16) but the final result, at the 
limit, is the relation (15) in the form 

The resonances are the special cases for which 

e, z 0. 

Working with equation (16) is equivalent to approximating the exact solution, while if 
it were possible to find a function z such that 

z J-{ai}, 

x = - ( z l s> / ( z l e> .  

then one could obtain from (9) directly the phase 

2.3. The method 

Using (9) and (10) we have in the nth approximation 

n 

+ 1 a,aj(u, 3 U j ) .  (19) 
i . j  

This expression, which at the limit n + a3 is zero, is simply the square of the norm of the 
function on = Aco,. 

The minimum of this norm is obtained when xn and aj's fulfil the conditions : 

or explicitly 
n 

(S, C)+X,(C, C)+ a,(C, U J  = ( C ,  w,) = 0 

( S ,  U j ) + X , ( C ,  Uj)+ 1 U i ( U j ,  U;) = ( U j ,  0,) = 0 

i =  I 

N 

1=0 

Then as N: = (on, w,), taking into account (19) we have : 

(19a) 

j = 1 ,2 , .  . .  ,n. (19b) 

D, = det(i,j) 
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U 1  U2  . . .  U, 
(1 , l )  (1,2) . . . (1, n) 

X I  = U l / J ( L  I), X n  = 

(n-1, 1) (n- l ,2)  . . . (  n-1,n) 

we find from (19) : 

X ,  = -D:'/D~' (21) 

DnNi = DF'x,' + 2D;'xn + DiS. 

DnNn2,min = DfS-(Dn I n 

and 

(22) 

In (22) only the ai;s are eliminated among (19). Its minimum is given by 

(23) 

As Cui} (or equivalently {ai}) are linearly independent, and provided that # 0 

The expressions (21H23) are greatly simplified if from the set {ui} we form the 

sc 2 DCC. 

and cl # 0, the determinants D,, DiC and Dfs are definite positive. 

equivalent one { x j }  by putting 

(DnDn- '''. 

and 

f = 1  

and (21) becomes 

It is important to notice that 

Therefore at the limit n 4 CO we can write 
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W I m \ 

from which again : 

The series in (26H28) are absolutely convergent. 
In cases near a resonance we see from (26) and (28) that both terms of (26) tend to 

zero, so one has to use (28). That both terms of (26) tend to zero is expected from remark 
(ii) in 9 2.2, as then CL = 0. Now as 

and 
m 

$I = S -  (s,xi)ti 
i =  1 

one can identify formulae (26) and (28) with (17). 
Finally the exact wavefunction w takes the form 

2.4. Choice of the components of the trial function 

For the applications one has to choose the functions ui or x i  in such a way that the series 
appearing in (26) or (28) converge quickly. 

Equation (22), using (25), becomes 

This is a parabola in the (x, N 2 )  plane. As 

N,Z - e+ 1 = [(s, x.+ 1 ) +  X(C9 x.+ AI2 (30) 

the two consecutive parabolas are tangential in their common point, 

x = - ( S y  X n +  l)/(C, x.+ 1) .  (31) 

Therefore if one demands that (30) is maximum for some value of x different from 
that of (31), then N,Z+l decreases faster and one approaches the exact solution more 
closely. Putting x = 0 in (30) we have 

(32) (S ,  xn+  1)2 = maximum. 
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If on the other hand we have in (30) x = x,, ie the value of x for which N :  is a minimum, 
we have the condition 

(32a) 

Either of conditions (32),  (32a) leads to faster convergence of the series in (26) and 
(28). Note that in every xi only one new function from the set {U,} is included, so in 
each step of the approximation we can fulfil conditions (32), (32a) by parametric adjust- 
ment in one function of {ui}. In order to avoid complications from the point of view 
that by varying parameters (linear or not) in {ui} one could arrive at  a set of non- 
independent functions, it is advisable for the functions U ,  to be taken in the form 

[(S, X n  + 1) + xn(C, X n  + 1 )I2 = maximum. 

U, = r"+'t', ( n  = 1 , 2 , .  . .) 
with 0 < lu,(O)1 < m. 

3. Modifications of the method 

3.1. One-component procedure 

From the complete set {ui} of independent functions one constructs the equivalent one 
fuj) as follows. 

Assuming that (ul, C) # 0 we put 

U 1  = U 1 '  U,, = ( l , C ) u n - ( n , C ) u l .  

The set ( t i j }  ( j  = 1 , 2 , .  . .) is equivalent to the set (ui} and moreover 

(Cj,C) = 0 for j > 2. 

Next we construct the equivalent set f x j )  by taking 

and 

It is easy to see that 

( ~ m ,  Xn) = 0 for m # n. 

Then we can express the exact solution as 
X 

o = S + x C +  ajxj. 
j = l  

Using now the conditions 

n 2 3  
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one finds 

from which 

with 

In this procedure the most convenient way of choosing the components of the trial 
function is deduced from the following. If we construct the function a,, by taking x j  
only with j 2 2 we find for x always that, independently of the number of the com- 
ponents of a,, , 

x, = - ( S ,  C)/(C, C), 

while the minimum norm becomes 

So we can write 

N ? + l . m i n  = jV?,min-(’* I n +  l)’/(xn+ 13 x n +  1)’ 

ie in every step of the approximation the minimum of the norm decreases by (S ,  X , , ) ~ / ( X , , ,  x,,). 
Therefore, as X’j”=2 ( S ,  x j ) ’ / ( x j :  x j )  < ( S ,  S)-(S, C)2/(C, C), in order to have a fast con- 
vergence it is enough to require every (S, x j ) 2 / ( x j ,  xj), ( j  > 2), to be maximum. In such 
a way we quickly arrive at the possible minimum norm by using a number of terms xi 
with j 2 2. Then we can turn our attention to the series X.j”=2 (ul  , x j ) 2 / ( x j ,  x j ) ,  and 
selecting some more x j ’ s ,  including now xl, in such a way that for each of them 
(ul, ~ ~ ) ~ / ( x ~ ,  xi) is again maximum, we complete also the ‘saturation’ of this series. 
Then the result obtained from (33) is quite accurate. 

3.2. Two-component procedure 

Again from a given complete set (ui} of independent functions, supposing that 

we construct the equivalent set 
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j = 3  

X n  = n >, 3. 

One then finds that the function 
1,. Because if we take 

in the exact solution has only the components x1 and 

( x n ,  0) = 0 
we have 

( x n  9 S )  + x(xn 3 C) + an(Xn 9 x.) = 0 

as (I,, x,) = 0 for n # m. Now for n >, 3, (x,, S )  = (x , ,  C) = 0 and therefore a, = 0, 
n 2 3. So the exact solution is of the form 

0 = S + X C + U , X ,  +a,x,  (37) 

where the only unknowns are the constants x, a,  and a,. As (37) represents the exact 
solution we shall have 

(S, S)+x(S, C)+a,(S, l)+a,(S, 2) = 0 

(S, S)+ x(C, C )  + a,(C, 1) + a,(C, 2) = 0 

( l ,S )+x( l ,  C)+a,( l ,  l)+U2(1,2) = 0 

(2, S)+x(2, C)+a,(2, 1)+a2(2, 2) = 0, 

where 

m 

These series are also absolutely convergent. By choosing u1 and U, such that 
( S ,  ul) and (S, ~ ~ ) ~ / ( u , ,  U,), or (C,  uJ2/(u1,  ul) and (C, ~ , ) ~ / ( u , ,  U,), become 
maxima, we have that their components in the subspace of { x j } , j  > 3, become as small 
as possible,and therefore the series (39) converge faster. Then the truncation of these 
series will introduce small errors in the results. 

From system (38) we obtain four values for x which coincide at the limit. In an 
approximation the largest difference between two of them can be considered as a 
measure of the error introduced by the truncation of the series. 
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4. Upper and lower bounds for phase shifts 

In this section a simple but quite general method is given by which one derives upper 
and lower bounds for the phase shifts. In $ 4.1 the method is explained for the case of 
one-channel scattering and in $4.2 it is extended to many-channel scattering. Some 
numerical results are given for e-H'  scattering in the static approximation in $4.3. 
The method is applicable also when exchange effects are taken into account and cal- 
culations are in progress for low-energy elastic and inelastic scattering of e* by a H' atom. 

4.1. One-channel case 

If w = S + xC + af is any trial function and we minimize its norm N 2  = (0, w), we find 
from (19) and (20) : 

( S , S ) + x ( S , C ) + a ( S , f )  = N 2  

(C, S )  + x(C, C) + a(C, f) = 0 (40) 

(f, S )  + x ( f ,  C) + a ( f ,  f) = 0. 

(S,  S )  + x(S, C )  + a(S, f) = 0 (41a) 

( C , S ) + x ( C , C ) + a ( C , f )  = 0 (414 

(f, S )  + x ( f ,  C) + 4f, f) = 0, (4 1 c )  

If instead we consider the system 

this system is compatible if and only if 

The determinant 

in any stage of approximation is definite positive. For energies near resonances e, = 0 
and the determinant may become very small?. Excluding this case, we have that the 
system (41) is compatible only when w is the exact solution. If however 

D 

the system (41) could give approximative values of x .  

t In that case we consider as a trial function o = S y  + C + af and one can proceed in a similar way. 
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6 D  = 2 

d2D = 

From (41) one obtains three values for x. We call a ‘proper’ pair of values those 
obtained from (41a, 41c) and (41b, 41c). We put 

x 1  = -A/B,  X Z  = -B/C (44) 

where 

(S, C) (S, C )  (S,fo) 

( S ,  6f) (C, Sf) (fo 5 Sf) 
(S, S) (S, C) (S,Jf) 

( S , C )  ( C , C )  ( C , 6 f )  > 0 (47b) 

6 3  Sf) (C, 6f) (Jf3 6f) 

(S, C) (C, C )  ( C , f o )  = 0 

For any f we have 

x1/x2 = A C / B ~ .  

As 

AC-B2 = (f,f). D 2 0 (47) 

we get 

XI/XZ 2 1, (464 

x , 2 x 2 > o  

XI Q x2 < 0. 

the equality holding only for the exact solution. So we shall have generally either 

or 

( S , W )  = 0, ( C , W )  = 0, ( S f ,  0) = 0 

is always compatible, which gives 6 D  = 0 for any 6f. 
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Also the determinants A ,  B,  C can be written as 

A = A 0 + 6 A + 6 2 A ,  B = Bo + 6 B  + J 2 B ,  c = CO + 6C + h2C, (49) 

where 

Then from (47) we obtain 

AC - B 2  = ( A ,  + 6 A  +d2A)(CO + 6C +d2C)-(B0 +6B + d2B)’ = ( f o  + 6 f , f o  + 6 f ) S 2 D ,  

from which we get 

C06A + Ao6C - 2 8 0 6 8  = 0 (51a) 

( 5  1b) A,d2C + C0d2A - 2B,S2B + (6A6C - 68’) = ( fof0)6’D = ( f , f , )D > 0 

6A6C-6B2  = - [ (C, f , ) (S ,  6 f ) - ( S , f o ) ( C , 6 f ) l 2  = - [ ( C , f , ) ( S , f ) - ( S , f 0 ) ( C , f ) l 2  < 0, 

etc. 

By explicit calculations, using (50), we find 

(52)  

( 5 2 4  

so (51b) together with (52)  yields 

A o 6 2 C + C o 6 2 A - 2 B 0 6 2 B  = ( fo , fo )D+(6B2-6A6C)  > 0. 

A ,  + 6 A  + J 2 A  A ,  Co6A - Ao6C + C062A - Ao62C x 1 x 2 - x 2  = -- 
C0+6C+62C CO ci 

From the relation 

rr 

and 
B ,  A ,  + 6~ + 6 2 ~  B , ~ B  - C , ~ A  + 8 , d 2 8  - c , ~ ~ A  
CO B0+6B+62B BOCO 

x - x  = -- E 

we obtain 
c ~ ( x 1 x * - x 2 ) + 2 B , c , ( x 1  - x )  = 2B,62B-A,62C-C062A < 0 ( 5 3 )  

because of ( 5 2 ~ ) .  Dividing by C i  we get 

x 1 x 2 - x ~ - 2 x ( x 1  - x )  < 0 

x 2 - 2 x 1 x + x 1 x 2  < 0. 

or 

(54) 

From equation (54) we find that the exact value of x lies between the values 
x 1  [ x , ( x l  - x 2 ) ] l i 2 ,  ie 

( 5 5 )  

In short the method is as follows : choosing a function f by parametric adjustment 

(56) 

x l - [ x 1 ( x 1 - x 2 ) ] l / 2  < x < x 1 + [ x I ( x 1 - x z ) ] 1 ~ 2 .  

We remark that as x 1 / x 2  > 1 the expressions in (55) are always real. 

we make 
N Z  = D/C << ( S ,  S ) .  

Then we calculate x 1  and x 2  and apply (55). 
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Usually condition (56) can be fulfilled by many sets of values of the parameters. 
To every one of these sets correspond generally different pairs of x1 and x 2 ,  and therefore 
we obtain various ranges for x. The overlapping of these ranges narrows the region 
for possible values of x, and in such way one can confine x within very close limits. 

Condition (56) is necessary to preserve the inequality in deriving (54). A more 
detailed discussion on this point is very interesting for the applications of the method 
and it will be the subject of a forthcoming paper. 

Since x 1  and x2 always have the same sign the case x 1 0 (x N CO) is easily recognized, 
as one finds x 1  and x2 either positive or negative but close to (very distant from) zero. 

4.2. Many-channel case 

The extension to many-channel scattering is easy. Using standing waves, in the case of 
n channels, one has to consider a set of wavefunctions of the form : 

n 

w i  = Si(ki)  + 1 xijC,(kj) + aif i  i = 1,2, . . .  n. 
j =  1 

Here k ,  is the energy of the ith channel and S,(ki), Ci(ki) the corresponding asymptotic 
expressions of the wavefunctions, similar to those of the one-channel case (see Q 2.2). 

The task here is to find xij)s, then using the reactance matrix technique one can derive 
the corresponding scattering matrix. 

Without loss of generality we can take i = 1 and aim to calculate xlm. 
We form again the system : 

j =  1 

n 

The determinant 

is zero only in the case of the exact solution and positive otherwise. 
The only thing one has to do here, for the calculation of x1;s is to choose for each 

of them the ‘proper’ pair of systems. For example for xlm one takes the following two 
systems : for the first we omit from system (57) the equation 

n 

(Cm9 SI)+ 1 XlACm, Cj)+al(Cm,fi) = 0 
j = l  

and for the second we omit the first equation in (57). 
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Dij = 

Then we find in an analogous way, as in the case of one channel : 

( S , S )  ( S ,  C )  (S,fi) 

( C , f i )  (fi,fj) 

(S,C) (C,C) (C,fi) i , j  = 1,2. 

Again here we have 

A,C, - B i  = DG, 2 0 

where G, is always positive and represents the minor determinant of D which is obtained 
from it if we omit the two rows and two columns which have in common the diagonal 
elements (S, , S,) and (C,,,, C,,,). The equality in (60) holds only in the case of the exact 
wavefunction. 

Then we shall have also here 

x\:/x\; 2 1. (61) 

From now on it is clear that the procedure follows exactly the same way as in the 
ie 

(62) 

case of one channel. Therefore we arrive at a similar condition for the bounds of 

x ( l )  ( 1 )  ( 1 ) -  ( 2 )  ( 1 )  ( 1 )  ( 2 )  112 
l m - [ x l m ( x l m  ~ 1 m ) I l ”  X l m  < x\2+ [ ~ 1 m ( ~ l m - ~ l m ) I  

while the required condition is again 

DIG,,, << (SI 9 si). (63) 

4.3. Numerical application 

We illustrate the method with an application to e - H ’  scattering in the static approxi- 
mation, for 1 = 0. The Hamiltonian is reduced to its radial part which in atomic units is 

We use as a trial function 

sin kr x 
k k  

a=- + -( 1 - e-Ar) cos kr  + a f ( r )  
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Minimizing D with respect to y we find 

*/ = - -DlJD22>  (67) 

so y is expressed in terms of the nonlinear parameters a and 1. 
As the matrix elements have been calculated analytically the computing time for 

obtaining results for various values of the nonlinear parameters was practically negligible. 
The results are shown to depend very sensitively on the values of the nonlinear para- 
meters a and 1 and it was possible to find many sets of values for which the norm 
N 2  = D/C was small in comparison with (S, S) .  

In table 1 we give results obtained by putting equal values for a and I.. However, there 
is a remarkable improvement in the results when one varies a and A independently. 
This is shown in table 2 for energies k = 0.1 and k = I. In spite of the fact that no 
attempt has been made to reach the minimum of N 2  = D/C,  the values of N 2 / ( S , S )  
in all the cases of tables 1 and 2 are of the order 10-3-10-4. 

Table 1. Bounds ofphase shifts q o .  Potential V = 2[1+(l/r)]e-*', w = 1 and 
1 = r(1 +yr)e-"'. 

~~ 

k a = l  Lower bound Upper bound Exactt 

1.5 0.70991 0.8 1554 
O.l 2.8 0.62100 0.72278 0.7222 

1.5 0.95704 1.0341 6 
0.2 2.9 0.8 84 30 0.97502 0.9725 

2.5 104178 1.06518 
0.4 2.8 1.03621 1.06374 1,0575 

1.4 0,97929 1.02655 
0.6 2.3 1.01971 1.03 374 1.0210 

0.9633 0.97031 

2.4 0.89375 0.90653 
''0 2.5 0.89953 0,94872 

0.8 2.4 0.96028 

0.9055 

t These values have been taken from a table of phase shifts, for various central potentials. 
computed by E J Kanellopoulos (unpublished), based on the exact solution of the 
Schrodinger equation (Kanellopoulos et al 1972). 

Tabk 2. Bounds of phase shifts q o .  Potential V = 2[1+(l/r)]e-", w = 1 and 
f =  r(l+yr)e-". 

~ ~~ 

k a l Lower bound Upper bound Exact 

2.8 2.8 0.62 100 0.72278 
3.0 2.0 0,721 12 0.72965 0.7222 0.1 

2.0 2.2 0.89032 0.90568 
2.6 1.2 0.90550 1~00813 0.9055 1 .o 



The least norm method: scattering phase shifts 653 

Appendix 

The exact solution of the Schrodinger equation with a local central potential, fulfilling 
the conditions in 0 2.1, is given (Kanellopoulos et al 1972) by 

where 

and 

and 

we can write 

Comparing this with (9) we see that 0 is the sum of the last two terms on the right-hand 
side of (A.2). It is now quite simple to show that each of these terms is normalizable 
provided that o(r) and dg(r)/dr fall at  infinity faster than r-3/2. 
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